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Abstract. Two cellular automata models of non-equilibrium phase transitions with one 
adsorbing state are studied in one and two dimensions. New evidence is found against the 
conjecture according to which all the one-component models with a single adsorbing state 
belong to the universality class of Reggeon field theory or directed percolation. 

1. Introduction 

There are some close analogies between the behaviour of equilibrium and non- 
equilibrium systems, For example, the diagram of steady states of a non-equilibrium 
system is similar to the phase diagram of an equilibrium one. In both cases, one can 
go from one phase to another by varying a control parameter. The phase transitions 
can often be described in terms of an order parameter, varying continuously or not at 
the transition. 

On the other hand, there are also some important differences between the equili- 
brium and non-equilibrium situations [l], As a result of the lack of a first principle 
formalism for the non-equilibrium case, many fundamental aspects are not understood 
yet. One of them is the critical behaviour in the vicinity of a second-order phase 
transition. In the framework of equilibrium phase transitions, a good understanding 
of this question has been obtained thanks to the renormalisation group approach [2]. 
The critical exponents describing the behaviour of the physical quantities in the vicinity 
of a second-order phase transition belong to universality classes characterised by a 
few parameters (dimensionality of the system, number of components of the order 
parameter). It is a legitimate question to ask if similar universality classes can be 
defined for the non-equilibrium case and what are their characteristics. 

The first attempt in this direction has been made for a class of models called 
interacting particle systems [3] and having the following characteristics. They are 
Markov processes on a lattice. The sites can have two states (vacant or occupied). The 
enumeration of the state of occupancy of all the lattice sites defines the configuration 
or the state of the system. Transitions between different configurations occur via 
elementary processes, related to creation, annihilation or hopping of particles, These 
models have one adsorbing state for which the lattice is completely empty (or full). 
Models such as contact process [4], Schlogl’s first model [ 5 ] ,  directed percolation [ 6 ]  
and Reggeon field theory [7] belonging to this class, have been studied both by Monte 
Carlo simulation [8] and series analysis [9]. 
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The dynamics usually considered were sequential dynamics for which at most one 
elementary procesg occurs per unit of time. However, simultaneous or parallel dynamics 
was also considered for directed percolation in one dimension [l0]. 

These studies revealed that all the above models belong to the same universality 
class, leading Orassberger [ i f ]  and Janssen €121 to the conjecture that all one- 
component models with a single adsorbing state belong to the universality class of 
Weggeon field theory. 

Some doubts &bout the above conjecture were raised by the work of Chopard and 
Droz [13], They studied a cellular automata version of a surface reaction model 
proposed by Zifl ef al[14], They found, that the order parameter exponents associated 
with the two second-order transitions present in the model were respectively p = 
035 f 0.05 and 0,45 f 0,05. These results are not quite compatible with those of directed 
percolation, Note, however, that this model possesses two adsorbing states. 

Moreover, Bidaux ef a1 €151, have recently investigated a class of probabilistic 
cellular automata having two pogsible states per site and one adsorbing phase. The 
result8 obtained in one and two dimensions showed significant discrepancies with the 
critical behaviour of directed percolation. 

Thus, the problem of the definition of universality classes remains open. This was 
the motivation for studying the cellular automata versions of two models studied by 
Dickman for sequential dynamics. 

The paper is organised 8s follows. In section 2, the models and their cellular 
automata versions are defined, In section 3, analytical results in the mean-field approxi- 
mation well as results of numerical simulations in one and two dimensions are 
discussed. Finally, in section 4, these results are compared with the ones obtained by 
ether authors and conclusions are made about the universality classes, 

2. The modeh 

We shall consider two diflerent models, the so-called A model (or A M )  and contact 
process model (or C P M ) ,  

2 1 ,  The A mudrl 

This model has been introduced by Dickman and Burschka [I61 as a simple model 
describing poisoning transitions similar to the ones observed on catalytic surfaces. One 
considers a d-dimensional substratum covered by a regular hypercubic lattice, Each 
site has two possible states: empty or occupied by a particle A. The first step of the 
dyn8mical process is the adsorption. The probability for a vacant site to become 
occupied during a short time interval 6f is p 6 f .  The second step of the process is 
desorption, The probability for an occupied site x to become vacant is rat, provided 
that at least one of the nearest neighbours of x is vacant, During the time interval at, 
one of the two processes occurs at each site. For simplicity we shall restrict ourselves 
to the case P = (1 = a ) $  Qualitatively speaking, one expects that if p is large enough, 
an initially empty substratum will be after some time completely covered by A particles. 
This is the poisoned phase or the adsorbing state. But, if p is small enough, the 
desorbing mechanism will be efficient enough to prevent such a poisoning. Thus one 
may anticipate the existence of a threshold value g, such that, in the stationary state, 
the covering fraction of A on the substratum XA will be 1 for p a pr (poisoned phase) 
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and smaller than 1 for p < p E  I f  XA varies continuously acrose p c  the tramition will 
be of second order and i t b  behaviour neat the threshold will be deecribed in terms of 
the ctifieai ekponent g: 

1 - X A B )  - ( P L  - P I P .  (211) 

The cellular automata version of this model is etraightforward. One considers a 
d=dimen8ional lattice2 Bach cell of the lattice j has two possible states: I*,) 10) ar  
la). The cellular ~ ~ t o m a t a  probabilistic fukb as f~ l lows .  

If IQ,)( f 1 = (0) then 
With probability (1 - p )  
with probability p* 

If l * , ) ( f )  = /A) then 
with probability p if the site j has one neareBt 
neighbour empty 
with probability 1, if all the rlei8hbours are occupied 
with probability (1 - = p )  if the site j has one nearest 
neighbour empty. 

( 2 J )  

2.2 n i e  contart pvucess mudel 

The contact process model is in many respects similar to the A model, However, the 
deeorptien meehaniam is more subtle, In the A model, there is an equiprobable 
desorption each time that not all the nearest neighbours of a cell are occupied, In  the 
CPM, the probability of desorption decreases when the number of nearest neighbours 
increases, The eellular automata version ofthis model is deflned by the fallowing rules, 

tf I*,)( t )  = (0) then 

If I*,)( t )  = IA) then 

(2,s) 

where nj is the number of occupied nearest=neighbour cells of the cell J, and I the 
eoordintztion number of the lattice ( a  = 3d for a d-dimensional hypercubic lattice). AS 
before, we shall restrict ourselves to the case q = ( 1  - - P ) ~  

I A) with probability q(  1 = n , / z )  
with probability 1 - q (  1 - n,/t) I*])( t + 1 1 = { ,o) 

3, Resultcl 

Thebe models have been investigated in ono and two dimensions, No exact anrlytiral 
solutions have been f o u ~ d  yet, even in one dimensions However, mern=deld=like 
approximations can be obtained, These models have also been studied numerically 
both on specitzl purpose rellular a u t o m m  machine  CAM-^) L171, tza well PB on a 
trrditlond computer, it turns out that the results obtained en the CAM-B were somehow 
biased due to the cellular automata algorithm used to generate random numbers for 
each cell in r paraIle1 way, Accordingly, the results quoted below are those obtained 
on an Apella workstation using P reliable random number generator, 
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3.1. The one-dimensional case 

3.1.1. The A model. Several mean-field-like approximations can be considered for such 
non-equilibrium models [ 181. The simplest is the one-site approximation in which one 
writes down the evolution equation for the probability that one cell is in a given state 
at a given time. More elaborated approximations take into account the correlations 
between cells and, for example, one can write the evolution equation for the joint 
probability that two nearest-neighbour sites assume a given state. Applied to the rules 
(2.2) and (2.3) in one dimension, one finds [19] a second-order phase transition for, 
respectively, p = 0.667 and p = 0.580. In both cases, the order parameter critical 
exponent is p = 1.0. 

Numerical simulations have been performed for chains of lengths L between 30 
and 65 536. The results obtained by finite-size scaling analysis coincide with those 
obtained for the chains of length 65 536. The corresponding phase diagram and the 
mean-field predictions are drawn on figure 1. A second-order phase transition is 
obtained at p c  = 0.365. The order parameter critical exponent p extracted by fitting the 
data with the relation (2.1) over the range 0.001 S (pc-p)s0 .O2 is p =0.280*0.010. 

Thus if mean-field-like approximations gives a qualitatively reasonable phase 
diagram, they overestimate the critical probability p c  and give a poor exponent p. 

' ' O K  / 

AM numerical 
CPM numerical 
------. 

0 0.5 1 .o 
P 

Figure 1. Phase diagram obtained by simulation for the one-dimensional A ( A M )  and 
contact process ( C P M )  models. The mean-field results for the A model is a one-site 
approximation. X, is the steady-state coverage fraction of A and p is the adsorption 
probability. 

3.1.2. The confact process model. Similar simulations have been made for the CPM. The 
phase diagram obtained for chains of length 40000 is also drawn in figure 1. A 
second-order phase transition occurs at p c  = 0.281 and the order parameter critical 
exponent (fitted in the same range than for the A M )  is p = 0.260*0.020. 

3.2. The two-dimensional case 

3.2.1. The A model. One-site and pair-mean-field approximations predict in two 
dimensions a second-order phase transition for, respectively, p c  = 0.800 and 0.785. As 
for the one-dimensional case, the critical exponent is p = 1. 
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More interesting are the numerical simulations on this model. The simulations have 
been made for square lattices of sizes L x  L, with L =  16, 32, 64, 128 and 256. The 
resulting phase diagram is shown in figure 2. The critical probability is pc = 0.747. The 
order parameter critical exponent p extracted by fitting the data with the relation (2.1) 
over the range 0.001 s ( p , - p )  ~ 0 . 0 2  is p =0.52*0.01. The fit is given in figure 3. 

One can note some oscillations of the transition line as a function of p .  We are 
presently not able to explain the reasons for such behaviour. 

3.2.2. The contact process model. For the CPM, simulations similar to those described 
in subsubsection 3.2.1 above leads to the phase diagram drawn in figure 2. The 
second-order phase transition occurs at p c  = 0.438 and the order parameter critical 
exponent p extracted by fitting the data with the relation (2.1) over the range 0.001 s 
( p c  - p )  d 0.020 is p = 0.52 * 0.03. 

For all the above cases, the measurement procedure was typically the following. 
Starting from an initial configuration (empty substratum) we did from 10 000 to 50 000 

I 
I 

1 .o 

/ I 

P 
Figure 2. Phase diagram obtained by simulation for the two-dimensional A ( A M )  and 
contact process ( C P M )  models. X, is the steady-state coverage fraction of A and p is the 
adsorption probability. 

8 

Figure 3. Logarithm of the order parameter ( 1  -XA)  as a function of the logarithm of the 
deviation from criticality for model A. The slope gives for the critical exponent p = 
0.52 i 0.01, 



Ffom the abew feeults, we ean dfuw the following sonelugiom; Pof the A model in 
ofle dimefleisfl, both the efitiaal pfobability p t  and the efitieat elcponent @ ate dimittif 
ifl €he eeilulnf auto~ata  appfeaeh (Le: ci pafallel updating] and the sequential updating 

#ow&vef, fof the cPM, the efitisd pfobabtlity fof the eellulaf automnta model 
p e  = 0:2#1 i e  laf$ef thafl that eetimated fof the 6equentid updating appfoash p e  = 0233 
[9]: The afitieal elcpone~t f i  afe eompatible in both appmaskes Irnd also eompatible 
with the value fof the two:difflansieflai difeeted pefcolation @ = 0~2% [e]; 

Thus, one see9 in  the above eaamples that changing the dynamics ffom B&pmttkd 
te pafallel may &Eaet the position of the phase tfansitjon, but doe8 not a&st (within 
the pfeeisien of the eimulation) the efitieai exponent p: These ebeefvationir support 

Let us flew analyse the twodimensioncil situation: Thefe mi to our knowledge, 
flo fesulte abouf the efitieal pfobubil~tiee fof thebe mode19 with sequentid updating; 
Thefefefe, we have nothing with whish to compnfe out  v ~ r l u e ~  of p e ;  

Mefe intefestiflg afe the values obtained fof the afltieal exponenf The v ~ r l u e ~  fer 
the two modelsj feepecfively p = 0 3 %  i 0:0l a ~ d  b = 0:5%* 0,03 are not compatible with 
the be§€ eetimate fef the thfeodmeneional diferted pefeolation, namely @ = 0386 [6]; 
Howevef, the fesutts obtained afe compatible with pfevious simulations on a sellultlf 
automim model ef: the tiff model [ i3J 

One eould nfgue €hut this discfepaney i9  due to one of the two following temona. 
Fifet, the a~itieal domain is v e g  small and we de not gee the true eritisat exponent; 
H w e v e f ,  the faage of vaiue9 of p k  I p used i 9  similar to the one=dimensiond cage and 
eomgafable with the fail$@ used by etkef &uthofs; More~vef ,  if ofle 1s out of the critical 
~ e g i e n ~  one would e ~ g e e t  the effective eritiral exponent to be in ~ W ~ Q R  its t ~ u e  value 
a ~ d  the mean=Beld pfedietiefl; This i9 not the ease h e n ;  

A seeend feason eould be the Piet that we wefe not yet tn a steady sttlte, We have 
ahaeked this point fot: the two=dimengienal CPM: fflafeusing the number of itemtione 
before the stead8 state was feaohed by a faetof thifiy did not change the fesulta in a 
eignifieant maflnef, 

Thus we eseelude that out; two=dtmensionaI models give 30me othet; evidence that 
the emjeetufe of Chassbefget and danssen m y  net be correct for cellular automata 
medele ue al~eady noticed on difie~ent models by Bidaux et a /  [ i f ] ;  We believe that 
u s h g  P hlly pti~i~llel  dyflamic~ instead of B eequential one is a felevant ditfefense and 
thus that the type ofdynamies ueed may be one parametet aharactefidng the univerdity 
elaseas Bot; nwmquitibrium phaae transitions: 

ilj3j3Fe&eh @ = &%?? [g]: 

the eORj@Ci€Uf@ O f  &P99b&f&F and dM98efl: 

This werk wt49 supgeftad by the Swiss Nt4t1oaal Srience Poundatton. 
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