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Abstract. Two cellular automata models of non-equilibrium phase transitions with one
adsorbing state are studied in one and two dimensions. New evidence is found against the
conjecture according to which all the one-component models with a single adsorbing state
belong to the universality class of Reggeon field theory or directed percolation.

1. Introduction

There are some close analogies between the behaviour of equilibrium and non-
equilibrium systems. For example, the diagram of steady states of a non-equilibrium
system is similar to the phase diagram of an equilibrium one. In both cases, one ¢an
go from one phase to another by varying a control parameter. The phase transitions
can often be described in terms of an order parameter, varying continuously or not at
the transition.

On the other hand, there are also some important differences between the equili-
brium and non-equilibrium situations {1]. As a result of the lack of a first principle
formalism for the non-equilibrium case, many fundamental aspects are not understood
yet. One of them is the critical behaviour in the vicinity of a second-order phase
transition. In the framework of equilibrium phase transitions, a good understanding
of this question has been obtained thanks to the renormalisation group approach [2].
The critical exponents describing the behaviour of the physical quantities in the vicinity
of a second-order phase transition belong to universality classes characterised by a
few parameters (dimensionality of the system, number of components of the order
parameter). It is a legitimate question to ask if similar universality classes can be
defined for the non-equilibrium case and what are their characteristics.

The first attempt in this direction has been made for a class of models called
interacting particle systems [3] and having the following characteristics. They are
Markov processes on a lattice. The sites can have two states (vacant or occupied). The
enumeration of the state of occupancy of all the lattice sites defines the configuration
or the state of the system. Transitions between different configurations occur via
elementary processes, related to creation, annihilation or hopping of particles. These
models have one adsorbing state for which the lattice is completely empty (or full).
Models such as contact process [4], Schlogl’s first model [5], directed percolation [6]
and Reggeon field theory [7] belonging to this class, have been studied both by Monte
Carlo simulation {8] and series analysis [9].
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The dynamics usually considered were sequential dynamics for which at most one
elementary process occurs per unit of time. However, simultaneous or parallel dynamics
was also considered for directed percolation in one dimension [10].

These studies revealed that all the above models belong to the same universality
class, leading Grassberger [11] and Janssen [12] to the conjecture that all one-
component models with a single adsorbing state belong to the universality class of
Reggeon field theory.

Some doubts about the above conjecture were raised by the work of Chopard and
Droz [13]. They studied a cellular automata version of a surface reaction model
proposed by Ziff et al [14], They found, that the order parameter exponents associated
with the two second-order transitions present in the model were respectively B =
0.55£0.05 and 0.45 £ 0.05. These results are not quite compatible with those of directed
percolation. Note, however, that this model possesses two adsorbing states,

Moreover, Bidaux er al [15], have recently investigated a class of probabilistic
cellular automata having two possible states per site and one adsorbing phase. The
results obtained in one and two dimensions showed significant discrepancies with the
critical behaviour of directed percolation.

Thus, the problem of the definition of universality classes remains open. This was
the motivation for studying the cellular automata versions of two models studied by
Dickman for sequential dynamigs.

The paper is organised as follows. In section 2, the models and their cellular
automata versions are defined. In section 3, analytical results in the mean-field approxi-
mation as well as results of numerical simulations in one and two dimensions are
discussed. Finally, in section 4, these results are compared with the ones obtained by
other authors und conclusions are made about the universality classes,

2. The models

We shall consider two different models, the so-called A model (or AM) and contact
process model (or cpMm).

2.1. The A model

This model has been introduced by Dickman and Burschka [16] as a simple model
describing poisoning transitions similar to the ones observed on catalytic surfaces. One
considers a d-dimensional substratum covered by a regular hypercubic lattice, Each
site has two possible states: empty or occupied by a particle A, The first step of the
dynamical process is the adsorption. The probability for a vacant site to become
occupied during a short time interval 8t is p8t. The second step of the process is
desorption. The probability for an occupied site x to become vacant is r8t, provided
that at least one of the nearest neighbours of x is vacant. During the time interval 81,
one of the two processes occurs at each site. For simplicity we shall restrict ourselves
to the case r=(1-p). Qualitatively speaking, one expects that if p is large enough,
an initially empty substratum will be after some time completely covered by A particles,
This is the poisoned phase or the adsorbing state. But, if p is small enough, the
desorbing mechanism will be efficient enough to prevent such a poisoning. Thus one
may anticipate the existence of a threshold value p. such that, in the stationary state,
the covering fraction of A on the substratum X, will be 1 for p = p. (poisoned phase)
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and smaller than 1 for p<p,.. If X, varies continuously across p. the transition will
be of second order and its behaviour near the threshold will be described in terms of
the eritical exponent 8:

1= Xalp)~(p.~p)P. (2.1)

The cellular automata version of this model is straightforward. One considers a
d-dimensional lattice. Each cell of the lattice / has two possible states: |¥,)=|0) or
|A). The cellular automata probabilistic rules are as follows.

If W) (1) =10) then

0 with probability (1-p)

wpr+1)= {|A) with probability p. (22)
If [W,)(1) =|A) then
|A) with probability p if the site j has one nearest
nelghbour empty
[W)(t+1)=¢ |A) with probability 1, if all the neighbours are occupied  (2.3)
|0) with probability (1 =p) if the site / has one nearest

neighbour empty.

2.2, The contact process model

The contact process model is in many respects similar to the A model. However, the

desorption mechanism is more subtle. In the A model, there is an equiprobable

desorption each time that not all the nearest neighbours of a cell ure occupled. In the

cpMm, the probability of desorption decreases when the number of nearest neighbours

inereases. The cellular automata version of this model is defined by the following rules.
If (W) (¢) =10) then

L with probability (1-p)
[t = {[A) with probability p. (2:4)
If [W)(1) = |A) then
_[A) with probability g(1=n,/2)
e+ = {I()) with probability 1 -g(1-n,/2) 23

where #; is the number of occupled nearest-neighbour cells of the cell j, and z the
coordination aumber of the lattice (z = 2d for a d-dimensional hypercubic lattice). As
before, we shall restriet ourselves to the case g =(1=p),

3. Results

These models have been investigated in one and two dimensions, No exact analytical
solutions have been found yet, even in one dimension. However, mean-field-like
approximations can be obtained. These models have also been studied numerically
both on special purpose cellular automata machine (cam-s) [17], as well as on a
traditional computer. [t turns out that the results obtained on the cam:6 were somehow
biased due to the cellular automata algorithm used to generate random numbers for
each eell in a parallel way. Accordingly, the results quoted below are those obtained
on an Apelle workstation using a reliable randem number generator,
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3.1. The one-dimensional case

3.1.1. The A model. Several mean-field-like approximations can be considered for such
non-equilibrium models [18]. The simplest is the one-site approximation in which one
writes down the evolution equation for the probability that one cell is in a given state
at a given time. More elaborated approximations take into account the correlations
between cells and, for example, one can write the evolution equation for the joint
probability that two nearest-neighbour sites assume a given state. Applied to the rules
(2.2) and (2.3) in one dimension, one finds [19] a second-order phase transition for,
respectively, p=0.667 and p=0.580. In both cases, the order parameter critical
exponent is 8 = 1.0.

Numerical simulations have been performed for chains of lengths L between 30
and 65 536. The results obtained by finite-size scaling analysis coincide with those
obtained for the chains of length 65 536. The corresponding phase diagram and the
mean-field predictions are drawn on figure 1. A second-order phase transition is
obtained at p. = 0.365. The order parameter critical exponent B extracted by fitting the
data with the relation (2.1) over the range 0.001 < (p.—p)=<0.02 is 8 =0.280=0.010.

Thus if mean-field-like approximations gives a qualitatively reasonable phase
diagram, they overestimate the critical probability p. and give a poor exponent 8.

Xa
=]
T
~

AM mean field

CPM numerical

|
¢ 0.5 1.0

p

Figure 1. Phase diagram obtained by simulation for the one-dimensional A (AM) and
contact process (CPM) models. The mean-field results for the A model is a one-site
approximation. X, is the steady-state coverage fraction of A and p is the adsorption
probability.

3.1.2. The contact process model. Similar simulations have been made for the cpm. The
phase diagram obtained for chains of length 40000 is also drawn in figure 1. A
second-order phase transition occurs at p.=0.281 and the order parameter critical
exponent (fitted in the same range than for the am) is 8 =0.260+0.020.

3.2, The two-dimensional case

3.2.1. The A model. One-site and pair-mean-field approximations predict in two
dimensions a second-order phase transition for, respectively, p. = 0.800 and 0.785. As
for the one-dimensional case, the critical exponent is 8 =1.
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More interesting are the numerical simulations on this model. The simulations have
been made for square lattices of sizes Lx L, with L =16, 32, 64, 128 and 256. The
resulting phase diagram is shown in figure 2. The critical probability is p. =0.747. The
order parameter critical exponent 8 extracted by fitting the data with the relation (2.1)
over the range 0.001<(p.—p)=<0.02 is B8 =0.52+0.01. The fit is given in figure 3.

One can note some oscillations of the transition line as a function of p. We are
presently not able to explain the reasons for such behaviour.

3.2.2. The contact process model. For the cpMm, simulations similar to those described
in subsubsection 3.2.1 above leads to the phase diagram drawn in figure 2. The
second-order phase transition occurs at p.=0.438 and the order parameter critical
exponent B extracted by fitting the data with the relation (2.1) over the range 0.001 <
(p.—p)=<0.020is B8 =0.52=0.03.

For all the above cases, the measurement procedure was typically the following.
Starting from an initial configuration (empty substratum) we did from 10 000 to 50 000

Figure 2. Phase diagram obtained by simulation for the two-dimensional A (aM) and
contact process (CPM) models. X, is the steady-state coverage fraction of A and p is the
adsorption probability.
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Figure 3. Logarithm of the order parameter (1 - X,) as a function of the logarithm of the

deviation from criticality for model A. The slope gives for the critical exponent B8 =
0.52+0.01.
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iterations o reach the stationary state. Obviously, the greatest number of iterations
was made near p.. Then 4 stationary average was taken by averaging over 500 points,
twe suceessive points being separated by 100 iteration steps.

4. Conelusions

Fromn the abeve results, we ean draw the following conelusions. For the A model in
onie dimension, beth the eritical probability p, and the eritieal exponent g are similar
in the eellular autemata approach (i.e. a parallel updating) and the sequential updating
appreach 8 =0.277 [9].

Hewever, for the cpMm, the eriticul probability for the cellular automata model
p=0.281 is larger than that estimated for the sequential updating approach p, = 0.233
[9]. The eritical exponent 8 are compatible in both approaches and also compatible
with the value for the two-dimensional directed percelation g =0.276 [6].

Thus, ene sees in the above examples that ehanging the dynamics from sequential
to parallel may affect the position of the phase trunsition, but dees not atfeet (within
the preeisien of the simulation) the critieal exponent B. These observations support
the eonjesture of Grassberger and Janssen.

Let us new analyse the two-dimensional situation. There are; to our knowledge,
ne results about the eritical probabilities for these models with sequential updating.
Therefore, we have noething with which to compare our values of p..

Mere interesting are the values obtained for the eritical exponent 8. The values for
the twe models, respectively g =0.52+0.01 and B =0.52 £ 0.03 are ot compatible with
the best estimate for the three-dimensional directed pereolation, namely g =0.586 [6].
Hewever, the results obtained are compatible with previous simulations on a cellular
automata medel of the Ziff medel [13].

One eould argue that this diserepaney is due to one of the two following reasons.
First, the critieal domain is very small and we do not see the true eritical exponent.
Hewever, the range of values of p, = p used is similar to the one-dimensional ease and
eomparable with the range used by ether authors. Moereover, if one is out of the eritieal
fegion, one weuld expeet the effective eritical exponent te be in between its true value
and the mean-field predietion. This is net the ease here.

A second reason could be the fuct that we were net yet in a steady state. We have
gheeked this point for the two-dimensienal cem. Inereasing the number of iterations
before the steady state was reached by a factor thirty did net change the results in a
signifieant manner.

Thus we conelude that eur two-dimensional medels give some other evidence that
the eenjecture of Grassberger and Janssen may not be eorrect for cellular automata
models as already noticed on ditferent models by Bidaux et al [15]). We believe that
using a fully paraliel dynamies instead of a sequential one is a relevant difference and
thus that the type of dynamics used may be one parameter characterising the universality
¢lasses for non-equilibrium phase transitions.
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